DispersiveWiki:Sandbox

From DispersiveWiki
Jump to navigationJump to search

Welcome to the sandbox! Please feel free to edit this page as you please by clicking on the "edit" tab at the top of this page. Terry 14:58, 30 July 2006 (EDT)

Some basic editing examples

  • You can create a link by enclosing a word or phrase in double brackets. Example: [[well-posed]] => well-posed
  • You can italicize using double apostrophes, and boldface using triple apostrophes. Examples: ''ad hoc'' => ad hoc; '''Miura transform''' => Miura transform.
  • LaTeX-style equations can be created using the <math> and </math> tags. Example: <math>M(u(t)) = \int_{\R^d} |u(t,x)|^2\ dx</math> => Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle M(u(t)) = \int_{\R^d} |u(t,x)|^2\ dx} .
  • Bulleted un-numbered lists (like this one) can be created by placing an asterisk * at the beginning of each item. Numbered lists are similar but use #. One can nest lists using ** and ##, etc.
  • Create new sections using two equality signs = on each side of the section name (edit this sandbox for some examples).
  • You can sign your name using three or four tildes: ~~~ or ~~~~.

this is the sandbox.


Duality in perturbation theory

Duality in perturbation theory has been introduced in Fra1998. It can be formulated by saying that a solution series with a large parameter is dual to a solution series with a small parameter as it can be obtained by interchanging the choice of the perturbation term in the given equation.

A typical perturbation problem can be formulated with the equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t u = L(u) + \lambda V(u) }

being Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda} an arbitrary ordering parameter. A solution series with a small parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda\rightarrow 0} can be computed taking

giving the following equations to be solved

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t u_0 = L(u_0) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t u_1 = L'(u_0)u_1 + V(u_0) }

where a derivative with respect to the ordering parameter is indicated by a prime. The choice of the ordering parameter is just a conventional matter and one can choice to consider Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L(u)} as a perturbation instead with respect to the same parameter. Indeed one formally could write the set of equations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t v_0 = V(v_0) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \partial_t v_1 = V'(v_0)v_1 + L(v_0) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \vdots }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle L(u)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(u)} are interchanged with the new solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v} . In order to undertsand the expansion parameter we rescale the time variable as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \tau = \lambda t} into the equation to be solved obtaining

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda\partial_{\tau} u = L(u) + \lambda V(u) }

and we introduce the small parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon=\frac{1}{\lambda}} . One sees that applying again the small perturbation theory to the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon\rightarrow 0} we get the required set of equations but now the time is scaled as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t/\epsilon} , that is, at the leading order the development parameter of the series will enter into the scale of the time evolution producing a proper slowing down ruled by the equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon\partial_t v_0 = V(v_0) }

that is an equation for adiabatic evolution that in the proper limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \epsilon\rightarrow 0} will give the static solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V(v_0)=0} . So, the dual series

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle v = \sum_n\frac{1}{\lambda}v_n }

is obtained by simply interchanging the terms for doing perturbation theory. This is a strong coupling expansion holding in the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda\rightarrow\infty} dual to the small perturbation theory Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lambda\rightarrow 0} we started with and having an adiabatic equation at the leading order.